Identifying Atypical Hemolytic Uremic Syndrome in the Pregnancy-Postpartum Setting

A Guide To Differential Diagnosis

Differential Diagnosis of Atypical-HUS¹⁻⁴

Microangiopathic hemolysis Schistocytes and/or **Thrombocytopenia** Platelet count $<150 \times 10^9/L$ or Elevated LDH and/or AND >25% decrease from baseline Decreased haptoglobin and/or **Decreased hemoglobin** Plus 1 or more of the following **Common Signs and Symptoms Neurological symptoms** Renal impairment GI symptoms Confusion and/or Elevated creatinine level and/or Diarrhea ± blood and/or Seizures and/or Decreased eGFR and/or Nausea/vomiting and/or Stroke and/or Elevated blood pressure and/or **Abdominal pain** and/or Other cerebral abnormalities Abnormal urinalysis results Gastroenteritis/pancreatitis Other Signs and Symptoms **CV** symptoms Pulmonary symptoms Visual symptoms MI and/or **Dyspnea** and/or Pain and blurred vision and/or Retinal vessel occlusion and/or Hypertension and/or Pulmonary hemorrhage and/or Arterial stenosis and/or Pulmonary edema Ocular hemorrhage Peripheral gangrene Evaluate ADAMTS13 activity and Shiga toxin/EHEC testa While ADAMTS13 results are awaited, a platelet count >30 \times 10 9 /L and/or sCr >1.7 to 2.3 mg/dL almost eliminates a diagnosis of severe ADAMTS13 deficiency (TTP) ≤5%^b ADAMTS13 activity >5% ADAMTS13 activity Shiga toxin/EHEC positive TTP **Atypical-HUS** STEC-HUS

TMA can also manifest in the presence of clinical conditions such as the following

- Pregnancy-postpartum
- Malignant/severe hypertension
- Solid organ transplantation

- Autoimmune disease (eg, SLE, scleroderma)
- Hematopoietic stem cell transplantation

^aShiga toxin/EHEC test is warranted with history/presence of GI symptoms. ^bRange found in published literature is <5%-10%.

ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif member 13; HUS, hemolytic uremic syndrome; CV, cardiovascular; eGFR, estimated glomerular filtration rate; EHEC, enterohemorrhagic *Escherichia coli*; GI, gastrointestinal; MI, myocardial infarction; sCr, serum creatinine; STEC-HUS, Shiga toxin–producing *Escherichia coli*-hemolytic uremic syndrome; SLE, systemic lupus erythematosus; TMA, thrombotic microangiopathy; TTP, thrombotic thrombocytopenic purpura.

Differential Diagnosis: Identifying Atypical-HUS in the Pregnancy-Postpartum Setting

- Thrombotic microangiopathy (TMA) is a serious medical condition characterized by microangiopathic hemolytic anemia, thrombocytopenia, and end-organ injury¹
- During pregnancy and the postpartum period, TMA can be caused by pregnancy-associated complications such as Hemolysis, Elevated Liver enzyme levels, and Low Platelet count (HELLP) syndrome or by other TMA disorders like atypical-HUS^{4,5}
 - In patients with complement dysregulation, normal pregnancy⁶ and pregnancy complications that activate the complement system, such as HELLP, may precipitate atypical-HUS or cause additional manifestations, resulting in persistent TMA despite treatment⁴
- Atypical-HUS is a disease associated with the chronic risk of a complement-mediated TMA that can be unmasked during or after pregnancy⁴
- A diagnosis of atypical-HUS may be missed when a women presents with a TMA during pregnancy because it can present with similar clinical features to HELLP⁵
 - Hemolysis is characteristic of both HELLP and atypical-HUS and hemolytic screening is essential to make a differential diagnosis⁵
- A high clinical suspicion for atypical-HUS should be raised if a woman presents with TMA during pregnancy along with the following charactertistics
 - Renal dysfunction⁷
 - Hemolysis with5
 - Elevated LDH, specifically LDH >1000 U/L with serum creatinine (sCr) >1.1 mg/dL⁵
 - High LDH:AST ratio (>10:1) or low hemoglobin (<8 g/dL)⁵
 - SCr >2.0 g/dL or persistently elevated sCr >1.1 g/dL for >72 hours postpartum⁵

- Elevated AST or ALT levels⁵
- >25% decrease in platelet count from baseline⁵
- Signs of persistent TMA more than 48 hours after delivery^{8,9}
- Frequent presentation of TMA postpartum¹⁰⁻¹⁴
- History of previous TMA^{10,11,15,16}
- Family history of renal impairment or atypical-HUS^{11,16}
- History of previous pregnancy-related complications¹⁰
- Timing of manifestation may identify patients with atypical-HUS
 - Atypical-HUS is a chronic disease, whereas symptoms of other pregnancy-associated conditions usually resolve within 24-48 hours of delivery⁷
 - 79% of cases of atypical-HUS unmasked by pregnancy have been described in the postpartum period¹⁰

A previous normal pregnancy does not exclude a diagnosis of atypical-HUS.¹⁰ If atypical-HUS or any TMA is suspected, involve a TMA expert in the diagnostic process.¹⁷

ALT, alanine aminotransferase; AST, aspartate aminotransferase; HELLP, Hemolysis, Elevated Liver enzyme levels, and Low Platelet count syndrome; HUS, hemolytic uremic syndrome; LDH, lactate dehydrogenase; sCr, serum creatinine; TMA, thrombotic microangiopathy TTP, thrombotic thrombocytopenic purpura.

Case Study^a

Patient Overview

- Female, aged 27 years, in the third trimester of pregnancy
- Presented to the emergency room with fatigue, nausea, vomiting, and upper right quadrant pain
- · Lab results showed anemia, thrombocytopenia, and elevated AST, ALT, LDH and creatinine
- Family history of thrombotic thrombocytopenic purpura (TTP)

Clinical Presentation and Management

Fatigue, nausea, vomiting, and upper right quadrant pain TTP was excluded based on ADAMTS13 activity	Liver enzymes and platelets normalized	Premature delivery	Presented with thrombocytopenia, hemolysis, and kidney failure 6 months after HELLP diagnosis
First Hospital Admission	5 days after PE/FFP	14 days after discharge	Second Hospital Admission
Diagnosis: class 3 HELLP ^{14,a} Treatment: PE and FFP	Discharged from hospital		Diagnosis: atypical-HUS

ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif member 13; FFP, fresh frozen plasma; HELLP, Hemolysis, Elevated Liver enzyme levels, and Low Platelet count syndrome; HUS, hemolytic uremic syndrome; PE, plasma exchange.

 $^{\circ}$ Class 1 HELLP, platelet count <50 \times 10 $^{\circ}$ /L (severe thrombocytopenia); class 2 HELLP, platelet count between 50-100 \times 10 $^{\circ}$ /L (moderate thrombocytopenia); class 3 HELLP, platelet count between 100-150 \times 10 $^{\circ}$ /L (mild thrombocytopenia). 14

Laboratory Values

Laboratory Tests	Normal Values	At First Hospital Admission	5 Days After FFP/PE	At Second Hospital Admission	
Schistocytes	No	Yes	Yes	Yes	
Platelet count, × 10 ⁹ /L	150-450	121	218	118	
Lactate dehydrogenase, U/L	100-190	260	200	269	
Hemoglobin, g/dL	12.0-16.0	9.5	14.3	4.2	
Haptoglobin, mg/dL	36-195	7.8	40	6.4	
Reticulocytes, %	0.5-1.5	2.4	1.6	3.9	
Creatinine, mg/dL	0.6-1.3	1.5	0.8	5.2	
Estimated glomerular filtration rate, mL/min/1.73 m ²	90+	87	92.2	14.2	
Proteinuria	0	1+	0	0	
Bilirubin, mg/dL	0.0-0.3	5.8	0.1	6.2	
Alanine aminotransferase, IU/L	7-56	662	54	24	
Aspartate aminotransferase, IU/L	5-40	435	33	26	
Differential diagnosis evaluation					
ADAMTS13 activity	≥5%	63%	63%	63%	

ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif member 13; FFP, fresh frozen plasma; IU, international unit; PE, plasma exchange.

Differential Diagnosis

- · A diagnosis of atypical-HUS was made based on
 - The presence of TMA post-delivery and following discontinuation of PE
- ADAMTS13 activity level that was >5%, ruling out TTP as a cause of TMA

^aThe case described here is representative of physician experience and does not include actual patient data.

Important Considerations for a Differential Diagnosis

Differentiation of atypical-HUS from other TMAs and pregnancy-associated conditions is essential for optimal management decisions^{10,18}

Atypical-HUS

ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif member 13; aHUS, atypical hemolytic uremic syndrome; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BP, blood pressure; ESRD, end-stage renal disease; LDH, lactate dehydrogenase; HUS, hemolytic uremic syndrome; MAHA, microangiopathic hemolytic anemia PE, plasma exchange; SBP, systolic blood pressure; STEC, Shiga toxin–producing *Escherichia coli*; TMA, thrombotic microangiopathy; ULN, upper limit of normal.

Atypical-HUS is a disease associated with the chronic risk of complement-mediated TMA that can be unmasked during or after pregnancy⁴

A diagnosis of atypical-HUS may be missed during pregnancy because it can present with similar clinical features to HELLP⁵

If TMA is suspected it is important to include a multidisciplinary team of specialists in the diagnostic process¹⁷

HELLP, Hemolysis, Elevated Liver enzyme levels, and Low Platelet count syndrome; HUS, hemolytic uremic syndrome; TMA, thrombotic microangiography.

References

- 1. Goodship THJ, et al. Kidney Int. 2017;91:539-551.
- 2. Azoulay E, et al. Chest. 2017;152:424-434.
- 3. Laurence J, et al. Clin Adv Hematol Oncol. 2016;14:2-15.
- 4. Asif A, et al. J Nephrol. 2017;30:347-362.
- 5. Gupta M, et al. Pregnancy Hypertens. 2018;12:29-34.
- 6. Bruel A et al. Clin J Am Soc Nephrol. 2017;12:1237-1247.
- 7. Fang CJ, et al. Br J Haematol. 2008;143:336-348.
- 8. Dobyne A, et al. Med J Obstet Gynecol. 2015;3:1064.
- 9. Sibai BM, et al. Am J Obstet Gynecol. 1993;169:1000-1006.
- 10. Fakhouri F, et al. J Am Soc Nephrol. 2010;21:859-867.
- 11. De Sousa Amorim E, et al. J Nephrol. 2015;28:641-645.
- 12. English FA, et al. Integr Blood Press Control. 2015;8:7-12.
- 13. Mutter WP, Karumanchi SA. Microvasc Res. 2008;75:1-8.
- 14. Haram K, et al. BMC Pregnancy Childbirth. 2009;9:8.
- 15. Sellier-Leclerc AL, et al. *J Am Soc Nephrol*. 2007;18:2392-2400.
- 16. Barbour T, et al. Nephrol Dial Transplant. 2012;27:2673-2685.
- 17. Rivera MGU, et al. *PLoS One*. 2018;13:e0206558.
- 18. Saad AF, et al. AJP Rep. 2016;6:e125-e128.
- 19. Huerta A, et al. *Kidney Int.* 2018;93:450-459.
- 20. Goodship THJ, Kavanaugh D. J Am Soc Nephrol.2010;21:731-732.

